If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+82x-2304=0
a = 1; b = 82; c = -2304;
Δ = b2-4ac
Δ = 822-4·1·(-2304)
Δ = 15940
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15940}=\sqrt{4*3985}=\sqrt{4}*\sqrt{3985}=2\sqrt{3985}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(82)-2\sqrt{3985}}{2*1}=\frac{-82-2\sqrt{3985}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(82)+2\sqrt{3985}}{2*1}=\frac{-82+2\sqrt{3985}}{2} $
| (7x-1)(8x-14)=90 | | -8-6(2a-3)=18-8a | | (7x-1)(8x-14)=180 | | 21-5a=6 | | 41/30=11/15-1/5x | | 8=n+3n=24 | | (x+3)(x+5)−(x+6)(x−6)=0 | | –9f=9−10f | | 3^x+3^x+1=12 | | 24/c=8/17 | | 1/2=3/4w | | 2(4x+-2)=6 | | 17=f+3.6 | | 2x+8+6x+2=30+3x | | -6+7p=4p | | 35-4a=11 | | 28/14=x/40 | | m-1/3=7/8 | | 1.0.6x=3.2 | | 1/2x-20-x=3(2x-1)-2x-1) | | 14/28=40/x | | 3(-6x+6)=-72 | | 26.06x+6=50 | | 8.2=4.2-4x | | (5x-9)(6x+2)=0 | | x/30=63/5 | | 5(-9+3x)=-120 | | x=3.57 | | 9x+15=892 | | 2+3a=–8+5a | | 3-4g=2g | | 50-6x=50 |